Author
Listed:
- Fang Peng
- Cheng Zhang
- Bugong Xu
- Jiehao Li
- Zhen Wang
- Hang Su
Abstract
Previous studies have shown that the motion intention recognition for lower limb prosthesis mainly focused on the identification of performed gait. However, the bionic prosthesis needs to know the next movement at the beginning of a new gait, especially in complex operation environments. In this paper, an upcoming locomotion prediction scheme via multilevel classifier fusion was proposed for the complex operation. At first, two motion states, including steady state and transient state, were defined. Steady-state recognition was backtracking of a completed gait, which would be used as prior knowledge of motion prediction. In steady-state recognition, surface electromyographic (sEMG) and inertial sensors were fused to improve recognition accuracy; five typical locomotion modes were recognized by random forest classifier with over 97.8% accuracy. The transient state was defined as an observation period at the initial stage of upcoming movement, in which only the sEMG signal was recorded due to the limitation of sliding window length. LightGBM classifier was validated to outperform other methods in the accuracy and prediction time of transient-state recognition. Finally, a simplified HMM model based on prior knowledge and observation result was constructed to predict upcoming locomotion. The results indicated that the locomotion prediction was over 91% accuracy. The proposed scheme implements the locomotion prediction at the initial stage of each gait and provides critical information for the gait control of lower limb prosthesis.
Suggested Citation
Fang Peng & Cheng Zhang & Bugong Xu & Jiehao Li & Zhen Wang & Hang Su, 2020.
"Locomotion Prediction for Lower Limb Prostheses in Complex Environments via sEMG and Inertial Sensors,"
Complexity, Hindawi, vol. 2020, pages 1-12, December.
Handle:
RePEc:hin:complx:8810663
DOI: 10.1155/2020/8810663
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8810663. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.