IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8752161.html
   My bibliography  Save this article

The Transmission Dynamics of Hepatitis B Virus via the Fractional-Order Epidemiological Model

Author

Listed:
  • Tahir Khan
  • Zi-Shan Qian
  • Roman Ullah
  • Basem Al Alwan
  • Gul Zaman
  • Qasem M. Al-Mdallal
  • Youssef El Khatib
  • Khaled Kheder
  • Mustafa Cagri Kutlu

Abstract

We investigate and analyze the dynamics of hepatitis B with various infection phases and multiple routes of transmission. We formulate the model and then fractionalize it using the concept of fractional calculus. For the purpose of fractionalizing, we use the Caputo–Fabrizio operator. Once we develop the model under consideration, existence and uniqueness analysis will be discussed. We use fixed point theory for the existence and uniqueness analysis. We also prove that the model under consideration possesses a bounded and positive solution. We then find the basic reproductive number to perform the steady-state analysis and to show that the fractional-order epidemiological model is locally and globally asymptotically stable under certain conditions. For the local and global analysis, we use linearization, mean value theorem, and fractional Barbalat’s lemma, respectively. Finally, we perform some numerical findings to support the analytical work with the help of graphical representations.

Suggested Citation

  • Tahir Khan & Zi-Shan Qian & Roman Ullah & Basem Al Alwan & Gul Zaman & Qasem M. Al-Mdallal & Youssef El Khatib & Khaled Kheder & Mustafa Cagri Kutlu, 2021. "The Transmission Dynamics of Hepatitis B Virus via the Fractional-Order Epidemiological Model," Complexity, Hindawi, vol. 2021, pages 1-18, December.
  • Handle: RePEc:hin:complx:8752161
    DOI: 10.1155/2021/8752161
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8752161.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8752161.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8752161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaagoub, Zakaria & Allali, Karam, 2022. "Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions and adaptive immunity," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Jeong, Wonhee & Yu, Unjong, 2022. "Effects of quadrilateral clustering on complex contagion," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8752161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.