IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8701219.html
   My bibliography  Save this article

Input-to-State Stability of Nonlinear Switched Systems via Lyapunov Method Involving Indefinite Derivative

Author

Listed:
  • Peng Li
  • Xiaodi Li
  • Jinde Cao

Abstract

This paper studies the input-to-state stability (ISS) of nonlinear switched systems. By using Lyapunov method involving indefinite derivative and average dwell-time (ADT) method, some sufficient conditions for ISS are obtained. In our approach, the time-derivative of the Lyapunov function is not necessarily negative definite and that allows wider applications than existing results in the literature. Examples are provided to illustrate the applications and advantages of our general results and the proposed approach.

Suggested Citation

  • Peng Li & Xiaodi Li & Jinde Cao, 2018. "Input-to-State Stability of Nonlinear Switched Systems via Lyapunov Method Involving Indefinite Derivative," Complexity, Hindawi, vol. 2018, pages 1-8, January.
  • Handle: RePEc:hin:complx:8701219
    DOI: 10.1155/2018/8701219
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/8701219.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/8701219.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8701219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ning, Chongyang & He, Yong & Wu, Min & Zhou, Shaowu, 2015. "Indefinite derivative Lyapunov–Krasovskii functional method for input to state stability of nonlinear systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 534-542.
    2. Chongyang Liu & Zhaohua Gong & Enmin Feng & Hongchao Yin, 2012. "Optimal switching control of a fed-batch fermentation process," Journal of Global Optimization, Springer, vol. 52(2), pages 265-280, February.
    3. Yang, Xinsong & Huang, Chuangxia & Zhu, Quanxin, 2011. "Synchronization of switched neural networks with mixed delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 817-826.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xueyan & Peng, Dongxue & Lv, Xiaoxiao & Li, Xiaodi, 2019. "Recent progress in impulsive control systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 244-268.
    2. Hamza Khan & József K. Tar & Imre Rudas & Levente Kovács & György Eigner, 2018. "Receding Horizon Control of Type 1 Diabetes Mellitus by Using Nonlinear Programming," Complexity, Hindawi, vol. 2018, pages 1-11, April.
    3. Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Li, Peng & Li, Xiaodi, 2019. "Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 314-323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K., Pooja Lakshmi & Senthilkumar, T., 2024. "Synchronization results for uncertain complex-valued neural networks under delay-dependent flexible impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Yu, Tianhu & Cao, Dengqing & Yang, Yang & Liu, Shengqiang & Huang, Wenhu, 2016. "Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 92-101.
    3. Sang, Hong & Zhao, Ying & Wang, Peng & Wang, Yuzhong & Yu, Shuanghe & Dimirovski, Georgi M., 2023. "Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Wu, Qianqian & Yang, Dan & Li, Xiaodi, 2023. "Output tracking control for state-dependent switched systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Li, Peng & Li, Xiaodi, 2019. "Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 314-323.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8701219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.