IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8496187.html
   My bibliography  Save this article

Complex Power System Status Monitoring and Evaluation Using Big Data Platform and Machine Learning Algorithms: A Review and a Case Study

Author

Listed:
  • Yuanjun Guo
  • Zhile Yang
  • Shengzhong Feng
  • Jinxing Hu

Abstract

Efficient and valuable strategies provided by large amount of available data are urgently needed for a sustainable electricity system that includes smart grid technologies and very complex power system situations. Big Data technologies including Big Data management and utilization based on increasingly collected data from every component of the power grid are crucial for the successful deployment and monitoring of the system. This paper reviews the key technologies of Big Data management and intelligent machine learning methods for complex power systems. Based on a comprehensive study of power system and Big Data, several challenges are summarized to unlock the potential of Big Data technology in the application of smart grid. This paper proposed a modified and optimized structure of the Big Data processing platform according to the power data sources and different structures. Numerous open-sourced Big Data analytical tools and software are integrated as modules of the analytic engine, and self-developed advanced algorithms are also designed. The proposed framework comprises a data interface, a Big Data management, analytic engine as well as the applications, and display module. To fully investigate the proposed structure, three major applications are introduced: development of power grid topology and parallel computing using CIM files, high-efficiency load-shedding calculation, and power system transmission line tripping analysis using 3D visualization. The real-system cases demonstrate the effectiveness and great potential of the Big Data platform; therefore, data resources can achieve their full potential value for strategies and decision-making for smart grid. The proposed platform can provide a technical solution to the multidisciplinary cooperation of Big Data technology and smart grid monitoring.

Suggested Citation

  • Yuanjun Guo & Zhile Yang & Shengzhong Feng & Jinxing Hu, 2018. "Complex Power System Status Monitoring and Evaluation Using Big Data Platform and Machine Learning Algorithms: A Review and a Case Study," Complexity, Hindawi, vol. 2018, pages 1-21, September.
  • Handle: RePEc:hin:complx:8496187
    DOI: 10.1155/2018/8496187
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/8496187.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/8496187.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8496187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Gil & Magnus Johnsson & Higinio Mora & Julian Szymański, 2019. "Review of the Complexity of Managing Big Data of the Internet of Things," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    2. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Wu, Juai & Zhang, Mengying & Xu, Tianheng & Gu, Duan & Xie, Dongliang & Zhang, Tengfei & Hu, Honglin & Zhou, Ting, 2023. "A review of key technologies in relation to large-scale clusters of electric vehicles supporting a new power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8496187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.