Author
Listed:
- Haifan Du
- Haiwen Duan
- Zhihan Lv
Abstract
This paper combines domestic and international research results to analyze and study the difference between the attribute features of English phrase speech and noise to enhance the short-time energy, which is used to improve the threshold judgment sensitivity; noise addition to the discrepancy data set is used to enhance the recognition robustness. The backpropagation algorithm is improved to constrain the range of weight variation, avoid oscillation phenomenon, and shorten the training time. In the real English phrase sound recognition system, there are problems such as massive training data and low training efficiency caused by the super large-scale model parameters of the convolutional neural network. To address these problems, the NWBP algorithm is based on the oscillation phenomenon that tends to occur when searching for the minimum error value in the late training period of the network parameters, using the K-MEANS algorithm to obtain the seed nodes that approach the minimal error value, and using the boundary value rule to reduce the range of weight change to reduce the oscillation phenomenon so that the network error converges as soon as possible and improve the training efficiency. Through simulation experiments, the NWBP algorithm improves the degree of fitting and convergence speed in the training of complex convolutional neural networks compared with other algorithms, reduces the redundant computation, and shortens the training time to a certain extent, and the algorithm has the advantage of accelerating the convergence of the network compared with simple networks. The word tree constraint and its efficient storage structure are introduced, which improves the storage efficiency of the word tree constraint and the retrieval efficiency in the English phrase recognition search.
Suggested Citation
Haifan Du & Haiwen Duan & Zhihan Lv, 2021.
"English Phrase Speech Recognition Based on Continuous Speech Recognition Algorithm and Word Tree Constraints,"
Complexity, Hindawi, vol. 2021, pages 1-11, May.
Handle:
RePEc:hin:complx:8482379
DOI: 10.1155/2021/8482379
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8482379. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.