IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8431784.html
   My bibliography  Save this article

Intelligent Turning Tool Monitoring with Neural Network Adaptive Learning

Author

Listed:
  • Maohua Du
  • Peixin Wang
  • Junhua Wang
  • Zheng Cheng
  • Shensong Wang

Abstract

Tool state monitoring is a key technology in intelligent manufacturing. But it is still in a research stage and lacks general adaptability for different machining conditions. To overcome this limitation, this work systematically investigates an intelligent, real-time, and visible tool state monitoring through adopting integrated theories and technologies, i.e., (a) through distinctively designed experimental technique with comprehensive consideration of cutting parameters and tool wear values as variables, (b) through bisensor fusion for simultaneous measurements of low and high frequency signals, (c) through multitheory fusion of wavelet decomposition and the Relief-F algorithm for performing dual feature extraction and feature dimension reduction to achieve more accurate state identification using neural network, and (d) through an innovative programming technique of MATLAB-nested labVIEW. This tool monitoring system has neural network adaptive learning ability with the change of the experimental sample signals which are collected simultaneously by selected vibration and acoustic emission (AE) sensors in all factors turning experiments. Based on LabVIEW and MATLAB hybrid programming, the waveforms of signals are observed and the significant characteristics of signals are extracted through the time-frequency domain analysis and then the calculation of the energy proportion of each frequency band obtained using 4 levels of wavelet packet decompositions of the vibration signal as well as 8 levels of wavelet multiresolution decompositions of the AE signal; the ensuing Relief-F algorithm is used to further reextract the features that are most relevant to the tool state as input of neural network pattern recognition. Through the BP neural network adaptive learning, tool state recognition model is finally established. The results show that the correct recognition rate of BP network model after samples training is 92.59%, which can more accurately and intelligently monitor the tool wear state.

Suggested Citation

  • Maohua Du & Peixin Wang & Junhua Wang & Zheng Cheng & Shensong Wang, 2019. "Intelligent Turning Tool Monitoring with Neural Network Adaptive Learning," Complexity, Hindawi, vol. 2019, pages 1-21, June.
  • Handle: RePEc:hin:complx:8431784
    DOI: 10.1155/2019/8431784
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8431784.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8431784.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8431784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8431784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.