IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8049504.html
   My bibliography  Save this article

A Machine Learning Approach to Predict Air Quality in California

Author

Listed:
  • Mauro Castelli
  • Fabiana Martins Clemente
  • Aleš Popovič
  • Sara Silva
  • Leonardo Vanneschi

Abstract

Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.

Suggested Citation

  • Mauro Castelli & Fabiana Martins Clemente & Aleš Popovič & Sara Silva & Leonardo Vanneschi, 2020. "A Machine Learning Approach to Predict Air Quality in California," Complexity, Hindawi, vol. 2020, pages 1-23, August.
  • Handle: RePEc:hin:complx:8049504
    DOI: 10.1155/2020/8049504
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8049504.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8049504.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8049504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasikumar Gurumoorthy & Aruna Kumari Kokku & Przemysław Falkowski-Gilski & Parameshachari Bidare Divakarachari, 2023. "Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    3. Alisha Banga & Ravinder Ahuja & Subhash Chander Sharma, 2023. "Performance analysis of regression algorithms and feature selection techniques to predict PM2.5 in smart cities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 732-745, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8049504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.