IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7838841.html
   My bibliography  Save this article

AI-Powered Precision in Diagnosing Tomato Leaf Diseases

Author

Listed:
  • MD Jiabul Hoque
  • Md. Saiful Islam
  • Md. Khaliluzzaman

Abstract

Correct detection of plant diseases is critical for enhancing crop yield and quality. Conventional methods, such as visual inspection and microscopic analysis, are typically labor-intensive, subjective, and vulnerable to human error, making them infeasible for extensive monitoring. In this study, we propose a novel technique to detect tomato leaf diseases effectively and efficiently through a pipeline of four stages. First, image enhancement techniques deal with problems of illumination and noise to recover the visual details as clearly and accurately as possible. Subsequently, regions of interest (ROIs), containing possible symptoms of a disease, are accurately captured. The ROIs are then fed into K-means clustering, which can separate the leaf sections based on health and disease, allowing the diagnosis of multiple diseases. After that, a hybrid feature extraction approach taking advantage of three methods is proposed. A discrete wavelet transform (DWT) extracts hidden and abstract textures in the diseased zones by breaking down the pixel values of the images to various frequency ranges. Through spatial relation analysis of pixels, the gray level co-occurrence matrix (GLCM) is extremely valuable in delivering texture patterns in correlation with specific ailments. Principal component analysis (PCA) is a technique for dimensionality reduction, feature selection, and redundancy elimination. We collected 9014 samples from publicly available repositories; this dataset allows us to have a diverse and representative collection of tomato leaf images. The study addresses four main diseases: curl virus, bacterial spot, late blight, and Septoria spot. To rigorously evaluate the model, the dataset is split into 70%, 10%, and 20% as training, validation, and testing subsets, respectively. The proposed technique was able to achieve a fantastic accuracy of 99.97%, higher than current approaches. The high precision achieved emphasizes the promising implications of incorporating DWT, PCA, GLCM, and ANN techniques in an automated system for plant diseases, offering a powerful solution for farmers in managing crop health efficiently.

Suggested Citation

  • MD Jiabul Hoque & Md. Saiful Islam & Md. Khaliluzzaman, 2025. "AI-Powered Precision in Diagnosing Tomato Leaf Diseases," Complexity, Hindawi, vol. 2025, pages 1-21, March.
  • Handle: RePEc:hin:complx:7838841
    DOI: 10.1155/cplx/7838841
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2025/7838841.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2025/7838841.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/cplx/7838841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7838841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.