IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7670382.html
   My bibliography  Save this article

Complexity to Forecast Flood: Problem Definition and Spatiotemporal Attention LSTM Solution

Author

Listed:
  • Yirui Wu
  • Yukai Ding
  • Yuelong Zhu
  • Jun Feng
  • Sifeng Wang

Abstract

With significant development of sensors and Internet of things, researchers nowadays can easily know what happens in physical space by acquiring time-varying values of various factors. Essentially, growing data category and size greatly contribute to solve problems happened in physical space. In this paper, we aim to solve a complex problem that affects both cities and villages, i.e., flood. To reduce impacts induced by floods, hydrological factors acquired from physical space and data-driven models in cyber space have been adopted to accurately forecast floods. Considering the significance of modeling attention capability among hydrology factors, we believe extraction of discriminative hydrology factors not only reflect natural rules in physical space, but also optimally model iterations of factors to forecast run-off values in cyber space. Therefore, we propose a novel data-driven model named as STA-LSTM by integrating Long Short-Term Memory (LSTM) structure and spatiotemporal attention module, which is capable of forecasting floods for small- and medium-sized rivers. The proposed spatiotemporal attention module firstly explores spatial relationship between input hydrological factors from different locations and run-off outputs, which assigns time-varying weights to various factors. Afterwards, the proposed attention module allocates temporal-dependent weights to hidden output of each LSTM cell, which describes significance of state output for final forecasting results. Taking Lech and Changhua river basins as cases of physical space, several groups of comparative experiments show that STA-LSTM is capable to optimize complexity of mathematically modeling floods in cyber space.

Suggested Citation

  • Yirui Wu & Yukai Ding & Yuelong Zhu & Jun Feng & Sifeng Wang, 2020. "Complexity to Forecast Flood: Problem Definition and Spatiotemporal Attention LSTM Solution," Complexity, Hindawi, vol. 2020, pages 1-13, March.
  • Handle: RePEc:hin:complx:7670382
    DOI: 10.1155/2020/7670382
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/7670382.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/7670382.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7670382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatemeh Bakhshi Ostadkalayeh & Saba Moradi & Ali Asadi & Alireza Moghaddam Nia & Somayeh Taheri, 2023. "Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3111-3127, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7670382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.