IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7495651.html
   My bibliography  Save this article

Interval Prediction Method for Solar Radiation Based on Kernel Density Estimation and Machine Learning

Author

Listed:
  • Meiyan Zhao
  • Yuhu Zhang
  • Tao Hu
  • Peng Wang
  • Daniele Salvati

Abstract

Precise global solar radiation (GSR) data are indispensable to the design, planning, operation, and management of solar radiation utilization equipment. Some examples prove that the uncertainty of the prediction of solar radiation provides more value than deterministic ones in the management of power systems. This study appraises the potential of random forest (RF), V-support vector regression (V-SVR), and a resilient backpropagation artiï¬ cial neural network (Rprop-ANN) for daily global solar radiation (DGSR) point prediction from average relative humidity (RHU), daily average temperature (AT), and daily sunshine duration (SD). To acquire more accurate predictions of DGSR and examine the influence of historical DGSR on the performance of point prediction models, two different model inputs are considered: (1) three meteorological variables and (2) the lags of DGSR and three meteorological variables. Then, two interval prediction methods are developed by introducing the KDE to out-of-bag (OOB), introducing kernel density estimation (KDE) to split conformal (SC) based on the three machine learning models. The two methods for interval prediction are denoted as OOB-KDE and SC-KDE. The mean absolute error (MAE), mean relative error (MRE), and Kendall rank correlation (Kendall) are used to assess the point prediction models. The performance of interval prediction methods is evaluated by the prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width criteria (CWC). The following conclusions are drawn from this study. First, the V-SVR model performs best with the lowest mean absolute error (MAE) of 0.016 and mean relative error (MRE) of 0.001. Second, the lags of DGSR improve the prediction accuracy by about 30%. Third, the OOB-KDE and SC-KDE methods improved the quality of the prediction interval (PI). OOB-KDE improved CWC by 81%, and SC-KDE improved CWC by 99.99%. Fourth, the best interval prediction result is obtained using the SC-KDE method using the V-SVR model. The average difference between its PICP and prediction interval nominal coverage (PINC) is only 3% of the PINC, and its PINAW is less than 0.007.

Suggested Citation

  • Meiyan Zhao & Yuhu Zhang & Tao Hu & Peng Wang & Daniele Salvati, 2022. "Interval Prediction Method for Solar Radiation Based on Kernel Density Estimation and Machine Learning," Complexity, Hindawi, vol. 2022, pages 1-13, February.
  • Handle: RePEc:hin:complx:7495651
    DOI: 10.1155/2022/7495651
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/7495651.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/7495651.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/7495651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7495651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.