Author
Listed:
- Michael Gircys
- Brian J. Ross
Abstract
Procedurally generated images and textures have been widely explored in evolutionary art. One active research direction in the field is the discovery of suitable heuristics for measuring perceived characteristics of evolved images. This is important in order to help influence the nature of evolved images and thereby evolve more meaningful and pleasing art. In this regard, particular challenges exist for quantifying aspects of style and shape. In an attempt to bridge the divide between computer vision and cognitive perception, we propose the use of measures related to image spatial frequencies. Based on existing research that uses power spectral density of spatial frequencies as an effective metric for image classification and retrieval, we posit that Fourier decomposition can be effective for guiding image evolution. We refine fitness measures based on Fourier analysis and spatial frequency and apply them within a genetic programming environment for image synthesis. We implement fitness strategies using 2D Fourier power spectra and phase, with the goal of evolving images that share spectral properties of supplied target images. Adaptations and extensions of the fitness strategies are considered for their utility in art systems. Experiments were conducted using a variety of greyscale and colour target images, spatial fitness criteria, and procedural texture languages. Results were promising, in that some target images were trivially evolved, while others were more challenging to characterize. We also observed that some evolved images which we found discordant and “uncomfortable” show a previously identified spectral phenomenon. Future research should further investigate this result, as it could extend the use of 2D power spectra in fitness evaluations to promote new aesthetic properties.
Suggested Citation
Michael Gircys & Brian J. Ross, 2019.
"Image Evolution Using 2D Power Spectra,"
Complexity, Hindawi, vol. 2019, pages 1-21, January.
Handle:
RePEc:hin:complx:7293193
DOI: 10.1155/2019/7293193
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7293193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.