IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7242943.html
   My bibliography  Save this article

Chaotic Signal Denoising Based on Adaptive Smoothing Multiscale Morphological Filtering

Author

Listed:
  • Guiji Tang
  • Xiaoli Yan
  • Xiaolong Wang

Abstract

Nonlinear time series denoising is the prerequisite for extracting effective information from observation sequence. An effective chaotic signal denoising method not only has a good signal-to-noise ratio (SNR) enhancement performance, but also can remain as a good unpredictable denoised signal. However, the inherent characteristics of chaos, such as extreme sensitivity to initial values and broadband spectrum, pose challenges for noise reduction of polluted chaotic signals. To address these issues, an adaptive smoothing multiscale morphological filtering (ASMMF) is proposed to reconstruct chaotic signals. In the process of noise reduction for contaminated chaotic signals, firstly, a multiscale morphological filter is constructed adaptively according to the multiscale permutation entropy (MPE) of morphological filter residuals, and the contaminated signals are filtered. Secondly, the weight coefficients of scale structural element are calculated by the residual sum of squares operation, and the chaotic signals are reconstructed. Finally, the resampled filter signals are smoothed by cubic B-spline interpolation operation. In the experiment, the Lorenz signal with white Gaussian noise, the measured sunspot, and the chaotic vibration signal are reconstructed by four comparison methods. The test results show that the proposed ASMMF method has obvious advantages in noise suppression and topological trajectory restoration.

Suggested Citation

  • Guiji Tang & Xiaoli Yan & Xiaolong Wang, 2020. "Chaotic Signal Denoising Based on Adaptive Smoothing Multiscale Morphological Filtering," Complexity, Hindawi, vol. 2020, pages 1-14, February.
  • Handle: RePEc:hin:complx:7242943
    DOI: 10.1155/2020/7242943
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/7242943.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/7242943.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7242943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7242943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.