IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7111548.html
   My bibliography  Save this article

PSO with Mixed Strategy for Global Optimization

Author

Listed:
  • Jinwei Pang
  • Xiaohui Li
  • Shuang Han
  • Alejandro F. Villaverde

Abstract

Particle swarm optimization (PSO) is an evolutionary algorithm for solving global optimization problems. PSO has a fast convergence speed and does not require the optimization function to be differentiable and continuous. In recent two decades, a lot of researches have been working on improving the performance of PSO, and numerous PSO variants have been presented. According to a recent theory, no optimization algorithm can perform better than any other algorithm on all types of optimization problems. Thus, PSO with mixed strategies might be more efficient than pure strategy algorithms. A mixed strategy PSO algorithm (MSPSO) which integrates five different PSO variants was proposed. In MSPSO, an adaptive selection strategy is used to adjust the probability of selecting different variants according to the rate of the fitness value change between offspring generated by each variant and the personal best position of particles to guide the selection probabilities of variants. The rate of the fitness value change is a more effective indicator of good strategies than the number of previous successes and failures of each variant. In order to improve the exploitation ability of MSPSO, a Nelder–Mead variant method is proposed. The combination of these two methods further improves the performance of MSPSO. The proposed algorithm is tested on CEC 2014 benchmark suites with 10 and 30 variables and CEC 2010 with 1000 variables and is also conducted to solve the hydrothermal scheduling problem. Experimental results demonstrate that the solution accuracy of the proposed algorithm is overall better than that of comparative algorithms.

Suggested Citation

  • Jinwei Pang & Xiaohui Li & Shuang Han & Alejandro F. Villaverde, 2023. "PSO with Mixed Strategy for Global Optimization," Complexity, Hindawi, vol. 2023, pages 1-19, September.
  • Handle: RePEc:hin:complx:7111548
    DOI: 10.1155/2023/7111548
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2023/7111548.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2023/7111548.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2023/7111548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Haonan & Goh, Hui Hwang & Zhang, Dongdong & Sun, Hui & Dai, Wei & Kurniawan, Tonni Agustiono & Dennis Wong, M.L. & Teo, Kenneth Tze Kin & Goh, Kai Chen, 2024. "Eco-Energetical analysis of circular economy and community-based virtual power plants (CE-cVPP): A systems engineering-engaged life cycle assessment (SE-LCA) method for sustainable renewable energy de," Applied Energy, Elsevier, vol. 365(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7111548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.