IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6871874.html
   My bibliography  Save this article

Unit Disk Graph-Based Node Similarity Index for Complex Network Analysis

Author

Listed:
  • Natarajan Meghanathan

Abstract

We seek to quantify the extent of similarity among nodes in a complex network with respect to two or more node-level metrics (like centrality metrics). In this pursuit, we propose the following unit disk graph-based approach: we first normalize the values for the node-level metrics (using the sum of the squares approach) and construct a unit disk graph of the network in a coordinate system based on the normalized values of the node-level metrics. There exists an edge between two vertices in the unit disk graph if the Euclidean distance between the two vertices in the normalized coordinate system is within a threshold value (ranging from 0 to , where k is the number of node-level metrics considered). We run a binary search algorithm to determine the minimum value for the threshold distance that would yield a connected unit disk graph of the vertices. We refer to “1 − (minimum threshold distance ) †as the node similarity index (NSI; ranging from 0 to 1) for the complex network with respect to the k node-level metrics considered. We evaluate the NSI values for a suite of 60 real-world networks with respect to both neighborhood-based centrality metrics (degree centrality and eigenvector centrality) and shortest path-based centrality metrics (betweenness centrality and closeness centrality).

Suggested Citation

  • Natarajan Meghanathan, 2019. "Unit Disk Graph-Based Node Similarity Index for Complex Network Analysis," Complexity, Hindawi, vol. 2019, pages 1-22, March.
  • Handle: RePEc:hin:complx:6871874
    DOI: 10.1155/2019/6871874
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6871874.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6871874.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6871874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grimmer, Justin, 2010. "A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases," Political Analysis, Cambridge University Press, vol. 18(1), pages 1-35, January.
    2. Seierstad, Cathrine & Opsahl, Tore, 2011. "For the few not the many? The effects of affirmative action on presence, prominence, and social capital of women directors in Norway," Scandinavian Journal of Management, Elsevier, vol. 27(1), pages 44-54, March.
    3. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    4. L. Šubelj & M. Bajec, 2011. "Robust network community detection using balanced propagation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 81(3), pages 353-362, June.
    5. Cong Li & Qian Li & Piet Mieghem & H. Stanley & Huijuan Wang, 2015. "Correlation between centrality metrics and their application to the opinion model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(3), pages 1-13, March.
    6. Manlio De Domenico & Vincenzo Nicosia & Alexandre Arenas & Vito Latora, 2015. "Structural reducibility of multilayer networks," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    2. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    3. Sreejith, R.P. & Jost, Jürgen & Saucan, Emil & Samal, Areejit, 2017. "Systematic evaluation of a new combinatorial curvature for complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 50-67.
    4. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    5. Zhou, Andu & Maletić, Slobodan & Zhao, Yi, 2018. "Robustness and percolation of holes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 459-468.
    6. Attar, Niousha & Aliakbary, Sadegh & Nezhad, Zahra Hosseini, 2020. "Automatic generation of adaptive network models based on similarity to the desired complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. McCannon, Bryan & Zhou, Yang & Hall, Joshua, 2021. "Measuring a Contract’s Breadth: A Text Analysis," Working Papers 11013, George Mason University, Mercatus Center.
    8. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    9. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    11. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    12. Joanna Tyrowicz & Siri Terjesen & Jakub Mazurek, 2017. "All on board? New evidence on board gender diversity from a large panel of firms," GRAPE Working Papers 5, GRAPE Group for Research in Applied Economics.
    13. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Zhu, Xuzhen & Wang, Ruijie & Wang, Zexun & Chen, Xiaolong & Wang, Wei & Cai, Shimin, 2019. "Double-edged sword effect of edge overlap on asymmetrically interacting spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 617-624.
    15. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    16. Manuel, Paul & Brešar, Boštjan & Klavžar, Sandi, 2022. "The geodesic-transversal problem," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    17. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    18. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    19. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    20. Matthew Gentzkow & Jesse M. Shapiro & Matt Taddy, 2019. "Measuring Group Differences in High‐Dimensional Choices: Method and Application to Congressional Speech," Econometrica, Econometric Society, vol. 87(4), pages 1307-1340, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6871874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.