IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6760920.html
   My bibliography  Save this article

An Empirical Evaluation of Supervised Learning Methods for Network Malware Identification Based on Feature Selection

Author

Listed:
  • C. Manzano
  • C. Meneses
  • P. Leger
  • H. Fukuda
  • Giacomo Fiumara

Abstract

Malware is a sophisticated, malicious, and sometimes unidentifiable application on the network. The classifying network traffic method using machine learning shows to perform well in detecting malware. In the literature, it is reported that this good performance can depend on a reduced set of network features. This study presents an empirical evaluation of two statistical methods of reduction and selection of features in an Android network traffic dataset using six supervised algorithms: Naïve Bayes, support vector machine, multilayer perceptron neural network, decision tree, random forest, and K-nearest neighbors. The principal component analysis (PCA) and logistic regression (LR) methods with p value were applied to select the most representative features related to the time properties of flows and features of bidirectional packets. The selected features were used to train the algorithms using binary and multiclass classification. For performance evaluation and comparison metrics, precision, recall, F-measure, accuracy, and area under the curve (AUC-ROC) were used. The empirical results show that random forest obtains an average accuracy of 96% and an AUC-ROC of 0.98 in binary classification. For the case of multiclass classification, again random forest achieves an average accuracy of 87% and an AUC-ROC over 95%, exhibiting better performance than the other machine learning algorithms. In both experiments, the 13 most representative features of a mixed set of flow time properties and bidirectional network packets selected by LR were used. In the case of the other five classifiers, their results in terms of precision, recall, and accuracy, are competitive with those obtained in related works, which used a greater number of input features. Therefore, it is empirically evidenced that the proposed method for the selection of features, based on statistical techniques of reduction and extraction of attributes, allows improving the identification performance of malware traffic, discriminating it from the benign traffic of Android applications.

Suggested Citation

  • C. Manzano & C. Meneses & P. Leger & H. Fukuda & Giacomo Fiumara, 2022. "An Empirical Evaluation of Supervised Learning Methods for Network Malware Identification Based on Feature Selection," Complexity, Hindawi, vol. 2022, pages 1-18, April.
  • Handle: RePEc:hin:complx:6760920
    DOI: 10.1155/2022/6760920
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6760920.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6760920.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6760920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6760920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.