IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6746303.html
   My bibliography  Save this article

Bayesian Estimation of Archimedean Copula-Based SUR Quantile Models

Author

Listed:
  • Nachatchapong Kaewsompong
  • Paravee Maneejuk
  • Woraphon Yamaka

Abstract

We propose a high-dimensional copula to model the dependence structure of the seemingly unrelated quantile regression. As the conventional model faces with the strong assumption of the multivariate normal distribution and the linear dependence structure, thus, we apply the multivariate exchangeable copula function to relax this assumption. As there are many parameters to be estimated, we consider the Bayesian Markov chain Monte Carlo approach to estimate the parameter interests in the model. Four simulation studies are conducted to assess the performance of our proposed model and Bayesian estimation. Satisfactory results from simulation studies are obtained suggesting the good performance and reliability of the Bayesian method used in our proposed model. The real data analysis is also provided, and the empirical comparison indicates our proposed model outperforms the conventional models in all considered quantile levels.

Suggested Citation

  • Nachatchapong Kaewsompong & Paravee Maneejuk & Woraphon Yamaka, 2020. "Bayesian Estimation of Archimedean Copula-Based SUR Quantile Models," Complexity, Hindawi, vol. 2020, pages 1-15, July.
  • Handle: RePEc:hin:complx:6746303
    DOI: 10.1155/2020/6746303
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/6746303.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/6746303.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6746303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woraphon Yamaka & Rangan Gupta & Sukrit Thongkairat & Paravee Maneejuk, 2023. "Structural and predictive analyses with a mixed copula‐based vector autoregression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 223-239, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6746303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.