IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6737951.html
   My bibliography  Save this article

Enhancing Stock Price Trend Prediction via a Time-Sensitive Data Augmentation Method

Author

Listed:
  • Xiao Teng
  • Tuo Wang
  • Xiang Zhang
  • Long Lan
  • Zhigang Luo

Abstract

Stock trend prediction refers to predicting future price trend of stocks for seeking profit maximum of stock investment. Although it has aroused broad attention in stock markets, it is still a tough task not only because the stock markets are complex and easily volatile but also because real short-term stock data is so limited that existing stock prediction models could be far from perfect, especially for deep neural networks. As a kind of time-series data, the underlying patterns of stock data are easily influenced by any tiny noises. Thus, how to augment limited stock price data is an open problem in stock trend prediction, since most data augmentation schemes adopted in image processing cannot be brutally used here. To this end, we devise a simple yet effective time-sensitive data augmentation method for stock trend prediction. To be specific, we augment data by corrupting high-frequency patterns of original stock price data as well as preserving low-frequency ones in the frame of wavelet transformation. The proposed method is motivated by the fact that low-frequency patterns without noisy corruptions do not hurt the true patterns of stock price data. Besides, a transformation technique is proposed to recognize the importance of the patterns at varied time points, that is, the information is time-sensitive. A series of experiments carried out on a real stock price dataset including 50 corporation stocks verify the efficacy of our data augmentation method.

Suggested Citation

  • Xiao Teng & Tuo Wang & Xiang Zhang & Long Lan & Zhigang Luo, 2020. "Enhancing Stock Price Trend Prediction via a Time-Sensitive Data Augmentation Method," Complexity, Hindawi, vol. 2020, pages 1-8, February.
  • Handle: RePEc:hin:complx:6737951
    DOI: 10.1155/2020/6737951
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/6737951.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/6737951.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6737951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth Fons & Paula Dawson & Xiao-jun Zeng & John Keane & Alexandros Iosifidis, 2020. "Evaluating data augmentation for financial time series classification," Papers 2010.15111, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6737951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.