Author
Listed:
- Ke Wang
- Guolin Liu
- Qiuxiang Tao
- Luyao Wang
- Yang Chen
Abstract
Light detection and ranging (LiDAR) is commonly used to create high-resolution maps; however, the efficiency and convergence of parameter estimation are difficult. To address this issue, we evaluated the structural characteristics of received LiDAR signals by decomposing them into Gaussian functions and applied the variable projection algorithm of the separable nonlinear least-squares problem to the process of waveform fitting. First, using a variable projection algorithm, we separated the linear (amplitude) and nonlinear (center position and width) parameters in the Gaussian function model; the linear parameters are expressed with nonlinear parameters by the function. Thereafter, the optimal estimation of the characteristic parameters of the Gaussian function components was transformed into a least-squares problem only comprising nonlinear parameters. Finally, the Levenberg–Marquardt algorithm was used to solve these nonlinear parameters, whereas the linear parameters were calculated simultaneously in each iteration, and the estimation results satisfying the nonlinear least-square criterion were obtained. Five groups of waveform decomposition simulation data and ICESat/GLAS satellite LiDAR waveform data were used for the parameter estimation experiments. During the experiments, for the same accuracy, the separable nonlinear least-squares optimization method required fewer iterations and lesser calculation time than the traditional method of not separating parameters; the maximum number of iterations was reached before the traditional method converged to the optimal estimate. The method of separating variables only required 14 iterations to obtain the optimal estimate, reducing the computational time from 1128 s to 130 s. Therefore, the application of the separable nonlinear least-squares problem can improve the calculation efficiency and convergence speed of the parameter solution process. It can also provide a new method for parameter estimation in the Gaussian model for LiDAR waveform decomposition.
Suggested Citation
Ke Wang & Guolin Liu & Qiuxiang Tao & Luyao Wang & Yang Chen, 2020.
"A Method for Solving LiDAR Waveform Decomposition Parameters Based on a Variable Projection Algorithm,"
Complexity, Hindawi, vol. 2020, pages 1-13, May.
Handle:
RePEc:hin:complx:6726139
DOI: 10.1155/2020/6726139
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6726139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.