IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6697697.html
   My bibliography  Save this article

Human Posture Recognition and Estimation Method Based on 3D Multiview Basketball Sports Dataset

Author

Listed:
  • Xuhui Song
  • Linyuan Fan
  • Zhihan Lv

Abstract

In traditional 3D reconstruction methods, using a single view to predict the 3D structure of an object is a very difficult task. This research mainly discusses human pose recognition and estimation based on 3D multiview basketball sports dataset. The convolutional neural network framework used in this research is VGG11, and the basketball dataset Image Net is used for pretraining. This research uses some modules of the VGG11 network. For different feature fusion methods, different modules of the VGG11 network are used as the feature extraction network. In order to be efficient in computing and processing, the multilayer perceptron in the network model is implemented by a one-dimensional convolutional network. The input is a randomly sampled point set, and after a layer of perceptron, it outputs a feature set of n × 16. Then, the feature set is sent to two network branches, one is to continue to use the perceptron method to generate the feature set of n × 1024, and the other network is used to extract the local features of points. After the RGB basketball sports picture passes through the semantic segmentation network, a picture containing the target object is obtained, and the picture is input to the constructed feature fusion network model. After feature extraction is performed on the RGB image and the depth image, respectively, the RGB feature, the local feature of the point cloud, and the global feature are spliced and fused to form a feature vector of N × 1152. There are three branches for this vector network, which, respectively, predict the object position, rotation, and confidence. Among them, the feature dimensionality reduction is realized by one-dimensional convolution, and the activation function is the ReLU function. After removing the feature mapping module, the accuracy of VC-CNN_v1 dropped by 0.33% and the accuracy of VC-CNN_v2 dropped by 0.55%. It can be seen from the research results that the addition of the feature mapping module improves the recognition effect of the network to a certain extent

Suggested Citation

  • Xuhui Song & Linyuan Fan & Zhihan Lv, 2021. "Human Posture Recognition and Estimation Method Based on 3D Multiview Basketball Sports Dataset," Complexity, Hindawi, vol. 2021, pages 1-10, March.
  • Handle: RePEc:hin:complx:6697697
    DOI: 10.1155/2021/6697697
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6697697.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6697697.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6697697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6697697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.