Author
Listed:
- Xiangping Wang
- Lei Huang
- Haifeng Huang
- Baoyu Li
- Ziyang Xia
- Jing Li
Abstract
In recent years, with the continuous improvement of urban public transportation capacity, citizens’ travel has become more and more convenient, but there are still some potential problems, such as morning and evening peak congestion, imbalance between the supply and demand of vehicles and passenger flow, emergencies, and social local passenger flow surged due to special circumstances such as activities and inclement weather. If you want to properly guide the local passenger flow and make a reasonable deployment of operating buses, it is necessary to grasp the changing law of public transportation short-term passenger flow. This paper builds a short-term passenger flow prediction model for urban public transportation based on the idea of integrated learning. The goal is to use the integrated model to accurately predict the short-term passenger flow of urban public transportation, using Multivariable Linear Regression (MLR), K-Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost), and Gated Recurrent Unit (GRU) as the four seed models, and then use regression algorithm to integrate the model and predict the passenger flow, station boarding and landing, and cross-sectional passenger flow data of the typical representative line 428 in the “Huitian Area” of Beijing from January 1, 2020, to May 31, 2020. Finally, the prediction results of the submodels are compared with those of the integrated model to verify the superiority of the integrated model. The research results of this paper can enrich the short-term passenger flow forecasting system of urban public transportation and provide effective data support and scientific basis for the passenger flow, vehicle management, and dispatch of urban public transportation.
Suggested Citation
Xiangping Wang & Lei Huang & Haifeng Huang & Baoyu Li & Ziyang Xia & Jing Li, 2020.
"An Ensemble Learning Model for Short-Term Passenger Flow Prediction,"
Complexity, Hindawi, vol. 2020, pages 1-13, December.
Handle:
RePEc:hin:complx:6694186
DOI: 10.1155/2020/6694186
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6694186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.