IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6690237.html
   My bibliography  Save this article

Improved Hierarchical Convolutional Features for Robust Visual Object Tracking

Author

Listed:
  • Jinping Sun
  • Heng Liu

Abstract

The target and background will change continuously in the long-term tracking process, which brings great challenges to the accurate prediction of targets. The correlation filter algorithm based on manual features is difficult to meet the actual needs due to its limited feature representation ability. Thus, to improve the tracking performance and robustness, an improved hierarchical convolutional features model is proposed into a correlation filter framework for visual object tracking. First, the objective function is designed by lasso regression modeling, and a sparse, time-series low-rank filter is learned to increase the interpretability of the model. Second, the features of the last layer and the second pool layer of the convolutional neural network are extracted to realize the target position prediction from coarse to fine. In addition, using the filters learned from the first frame and the current frame to calculate the response maps, respectively, the target position is obtained by finding the maximum response value in the response map. The filter model is updated only when these two maximum responses meet the threshold condition. The proposed tracker is evaluated by simulation analysis on TC-128/OTB2015 benchmarks including more than 100 video sequences. Extensive experiments demonstrate that the proposed tracker achieves competitive performance against state-of-the-art trackers. The distance precision rate and overlap success rate of the proposed algorithm on OTB2015 are 0.829 and 0.695, respectively. The proposed algorithm effectively solves the long-term object tracking problem in complex scenes.

Suggested Citation

  • Jinping Sun & Heng Liu, 2021. "Improved Hierarchical Convolutional Features for Robust Visual Object Tracking," Complexity, Hindawi, vol. 2021, pages 1-16, January.
  • Handle: RePEc:hin:complx:6690237
    DOI: 10.1155/2021/6690237
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6690237.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6690237.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6690237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6690237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.