IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6687337.html
   My bibliography  Save this article

English Grammar Error Correction Algorithm Based on Classification Model

Author

Listed:
  • Shanchun Zhou
  • Wei Liu
  • Wei Wang

Abstract

English grammar error correction algorithm refers to the use of computer programming technology to automatically recognize and correct the grammar errors contained in English text written by nonnative language learners. Classification model is the core of machine learning and data mining, which can be applied to extracting information from English text data and constructing a reliable grammar correction method. On the basis of summarizing and analyzing previous research works, this paper expounded the research status and significance of English grammar error correction algorithm, elaborated the development background, current status, and future challenges of the classification model, introduced the methods and principles of feature extraction method and dynamic residual structure, constructed a basic model for English grammar error correction based on the classification model, analyzed the classification model and translation model of English grammar error correction, proposed the English grammar error correction algorithm based on the classification model, performed the analyses of the model architecture and model optimizer of the grammar error correction algorithm, and finally conducted a simulation experiment and its result analysis. The study results show that, with the continuous increase of training samples and the continuous progress of learning process, the proposed English grammar error correction algorithm based on the classification model will continue to increase its classification accuracy, further refine its recognition rules, and gradually improve correction efficiency, thereby reducing processing time, saving storage space, and streamlining processing flow. The study results of this paper provide a certain reference for the further research on English grammar error correction algorithm based on the classification model.

Suggested Citation

  • Shanchun Zhou & Wei Liu & Wei Wang, 2021. "English Grammar Error Correction Algorithm Based on Classification Model," Complexity, Hindawi, vol. 2021, pages 1-11, January.
  • Handle: RePEc:hin:complx:6687337
    DOI: 10.1155/2021/6687337
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6687337.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6687337.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6687337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kitti Nagy & Jozef Kapusta, 2021. "Improving fake news classification using dependency grammar," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6687337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.