Author
Listed:
- Xinni Liu
- Sadaam Hadee Hussein
- Kamarul Hawari Ghazali
- Tran Minh Tung
- Zaher Mundher Yaseen
- Baogui Xin
Abstract
Deformation of ground during tunnelling projects is one of the complex issues that is required to be monitored carefully to avoid the unexpected damages and human losses. Accurate prediction of ground settlement (GS) is a crucial concern for tunnelling problems, and the adequate predictive model can be a vital tool for tunnel designers to simulate the ground settlement accurately. This study proposes relatively new hybrid artificial intelligence (AI) models to predict the ground settlement of earth pressure balance (EPB) shield tunnelling in the Bangkok MRTA project. The predictive models were various nature-inspired frameworks, such as differential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimizer (ACO) to tune the adaptive neuro-fuzzy inference system (ANFIS). To obtain the accurate and reliable results, the modeling procedure is established based on four different dataset scenarios including (i) preprocessed and normalized (PPN), (ii) preprocessed and nonnormalized (PPNN), (iii) non-preprocessed and normalized (NPN), and (iv) non-preprocessed and nonnormalized (NPNN) datasets. Results indicated that PPN dataset scenario significantly affected the prediction models in terms of their perdition accuracy. Among all the developed hybrid models, ANOFS-PSO model achieved the best predictability performance. In quantitative terms, PPN-ANFIS-PSO model attained the least root mean square error value (RMSE) of 7.98 and a correlation coefficient value (CC) of 0.83. Overall, the attained results confirmed the superiority of the explored hybrid AI models as robust predictive model for ground settlement of earth pressure balance (EPB) shield tunnelling.
Suggested Citation
Xinni Liu & Sadaam Hadee Hussein & Kamarul Hawari Ghazali & Tran Minh Tung & Zaher Mundher Yaseen & Baogui Xin, 2021.
"Optimized Adaptive Neuro-Fuzzy Inference System Using Metaheuristic Algorithms: Application of Shield Tunnelling Ground Surface Settlement Prediction,"
Complexity, Hindawi, vol. 2021, pages 1-15, March.
Handle:
RePEc:hin:complx:6666699
DOI: 10.1155/2021/6666699
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6666699. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.