Author
Listed:
- Weiwei Hao
- Hongyan Gao
- Zongqing Liu
- Abd E.I.-Baset Hassanien
Abstract
This paper proposes a nonlinear autoregressive neural network (NARNET) method for the investment performance evaluation of state-owned enterprises (SOE). It is different from the traditional method based on machine learning, such as linear regression, structural equation, clustering, and principal component analysis; this paper uses a regression prediction method to analyze investment efficiency. In this paper, we firstly analyze the relationship between diversified ownership reform, corporate debt leverage, and the investment efficiency of state-owned enterprises (SOE). Secondly, a set of investment efficiency evaluation index system for SOE was constructed, and a nonlinear autoregressive neural network approach was used for verification. The data of A-share state-owned listed companies in Shanghai and Shenzhen stock exchanges from 2009 to 2018 are taken as a sample. The experimental results show that the output value from the NARNET is highly fitted to the actual data. Based on the neural network model regression analysis, this paper conducts a descriptive statistical analysis of the main variables and control variables of the evaluation indicators. It verifies the direct impact of diversified ownership reform on the investment efficiency of SOE and the indirect impact on the investment efficiency of SOE through corporate debt leverage.
Suggested Citation
Weiwei Hao & Hongyan Gao & Zongqing Liu & Abd E.I.-Baset Hassanien, 2021.
"An Evaluation Study on Investment Efficiency: A Predictive Machine Learning Approach,"
Complexity, Hindawi, vol. 2021, pages 1-9, February.
Handle:
RePEc:hin:complx:6658516
DOI: 10.1155/2021/6658516
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6658516. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.