Author
Abstract
To improve the accuracy of the multiple channel integration quality (MCIQ) evaluation, this paper proposes a comprehensive evaluation method using the nonlinear autoregressive exogenous model (NARX) and constructs an index system. First, the entropy method is used to determine the objective weight of each indicator. The indicators used in this paper are process consistency, information consistency, emotional value, procedural value, service structure transparency, online result value, business relevance, and online purchase intention. Second, an improved gray relational analysis (GRA) algorithm is used to obtain the comprehensive gray relational degree between the above eight indicators’ standard samples and the tested samples. Then, this study uses the dataset preprocessed with the GRA algorithm for training the NARX model. Then, this study uses the trained model to evaluate the quality of multiple channel integration comprehensively. Next, this study uses standardized methods to quantify the evaluation results to provide new ideas and theoretical guidance for teaching traditional retailers to use the advantages of multiple channels to expand their online business. This paper uses 50,000 consecutive samples of a product for 3 months as a dataset in the experimental part. Through the GRA method and the NARX model, the comprehensive gray relational degree between the test sample and the ideal sample is obtained, and the results are quantified. Experiments show that, compared with the GRA method, this paper’s method has a higher degree of fit between the output value and the target value.
Suggested Citation
Xiaolei Wang & Yingzhao He, 2020.
"Multiple Channel Integration Quality Assessment Method Using NARX,"
Complexity, Hindawi, vol. 2020, pages 1-9, November.
Handle:
RePEc:hin:complx:6650343
DOI: 10.1155/2020/6650343
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6650343. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.