Author
Listed:
- Tao Liu
- Yuli Hu
- Hui Xu
- Shenggang Li
Abstract
Autonomous underwater vehicles (AUVs) are widely used to accomplish various missions in the complex marine environment; the design of a control system for AUVs is particularly difficult due to the high nonlinearity, variations in hydrodynamic coefficients, and external force from ocean currents. In this paper, we propose a controller based on deep reinforcement learning (DRL) in a simulation environment for studying the control performance of the vectored thruster AUV. RL is an important method of artificial intelligence that can learn behavior through trial-and-error interactions with the environment, so it does not need to provide an accurate AUV control model that is very hard to establish. The proposed RL algorithm only uses the information that can be measured by sensors inside the AUVs as the input parameters, and the outputs of the designed controller are the continuous control actions, which are the commands that are set to the vectored thruster. Moreover, a reward function is developed for deep RL controller considering different factors which actually affect the control accuracy of AUV navigation control. To confirm the algorithm’s effectiveness, a series of simulations are carried out in the designed simulation environment, which is a method to save time and improve efficiency. Simulation results prove the feasibility of the deep RL algorithm applied to the control system for AUV. Furthermore, our work also provides an optional method for robot control problems to deal with improving technology requirements and complicated application environments.
Suggested Citation
Tao Liu & Yuli Hu & Hui Xu & Shenggang Li, 2021.
"Deep Reinforcement Learning for Vectored Thruster Autonomous Underwater Vehicle Control,"
Complexity, Hindawi, vol. 2021, pages 1-25, April.
Handle:
RePEc:hin:complx:6649625
DOI: 10.1155/2021/6649625
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6649625. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.