IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6638522.html
   My bibliography  Save this article

Scene Matching Method for Children’s Psychological Distress Based on Deep Learning Algorithm

Author

Listed:
  • Junli Su
  • Wei Wang

Abstract

In the process of children’s psychological development, various levels of psychological distress often occur, such as attention problems, emotional problems, adaptation problems, language problems, and motor coordination problems; these problems have seriously affected children’s healthy growth. Scene matching in the treatment of psychological distress can prompt children to change from a third-person perspective to a first-person perspective and shorten the distance between scene contents and child’s perceptual experience. As a part of machine learning, deep learning can perform mapping transformations in huge data, process huge data with the help of complex models, and extract multilayer features of scene information. Based on the summary and analysis of previous research works, this paper expounded the research status and significance of the scene matching method for children’s psychological distress, elaborated the development background, current status, and future challenges of deep learning algorithm, introduced the methods and principles of depth spatiotemporal feature extraction algorithm and dynamic scene understanding algorithm, constructed a scene matching model for children’s psychological distress based on deep learning algorithm, analyzed the scene feature extraction and matching function construction of children’s psychological distress, proposed a scene matching method for children’s psychological distress based on deep learning algorithm, performed scene feature matching and information processing of children’s psychological distress, and finally conduced a simulation experiment and analyzed its results. The results show that the deep learning algorithm can have a deep and abstract mining on the characteristics of children’s psychological distress scenes and obtain a large amount of more representative characteristic information through training on large-scale data, thereby improving the accuracy of classification and matching of children’s psychological distress scenes. The study results of this paper provide a reference for further researches on the scene matching method for children’s psychological distress based on deep learning algorithm.

Suggested Citation

  • Junli Su & Wei Wang, 2021. "Scene Matching Method for Children’s Psychological Distress Based on Deep Learning Algorithm," Complexity, Hindawi, vol. 2021, pages 1-11, February.
  • Handle: RePEc:hin:complx:6638522
    DOI: 10.1155/2021/6638522
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6638522.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6638522.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6638522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6638522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.