IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6638038.html
   My bibliography  Save this article

Evaluation of an Information Flow Gain Algorithm for Microsensor Information Flow in Limber Motor Rehabilitation

Author

Listed:
  • Naiqiao Ning
  • Yong Tang
  • Wei Wang

Abstract

This paper conducts an evaluative study on the rehabilitation of limb motor function by using a microsensor information flow gain algorithm and investigates the surface electromyography (EMG) signals of the upper limb during rehabilitation training. The surface EMG signals contain a large amount of limb movement information. By analysing and processing the surface EMG signals, we can grasp the human muscle movement state and identify the human upper limb movement intention. The EMG signals were processed by the trap and filter combination denoising method and wavelet denoising method, respectively, the signal-to-noise ratio was used to evaluate the noise reduction effect, and finally, the wavelet denoising method with a better noise reduction effect was selected to process all the EMG signals. After the noise is removed, the signal is extracted in the time domain and frequency domain, and the root mean square (RMS), absolute mean, median frequency in the time domain, and average power frequency in the frequency domain are selected and input to the classifier for pattern recognition. The support vector machine is used to classify the myoelectric signals and optimize the parameters in the support vector machine using the grid search method and particle swarm optimization algorithm and classify the test samples using the trained support vector machine. Compared with the classification results of the grid search optimized support vector machine, the optimized vector machine has a 7% higher recognition rate, reaching 85%. The action recognition classification method of myoelectric signals is combined with an upper limb rehabilitation training platform to verify the feasibility of using myoelectric signals for rehabilitation training. After the classifier recognizes the upper limb movements, the upper computer sends movement commands to the controller to make the rehabilitation platform move according to the recognition results, and finally, the movement execution accuracy of the rehabilitation platform reaches 80% on average.

Suggested Citation

  • Naiqiao Ning & Yong Tang & Wei Wang, 2021. "Evaluation of an Information Flow Gain Algorithm for Microsensor Information Flow in Limber Motor Rehabilitation," Complexity, Hindawi, vol. 2021, pages 1-11, March.
  • Handle: RePEc:hin:complx:6638038
    DOI: 10.1155/2021/6638038
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6638038.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6638038.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6638038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6638038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.