IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6627409.html
   My bibliography  Save this article

Chaotic Fruit Fly Algorithm for Solving Engineering Design Problems

Author

Listed:
  • M. A. El-Shorbagy
  • Akif Akgul

Abstract

The aim of this article is to present a chaotic fruit fly algorithm (CFFA) as an optimization approach for solving engineering design problems (EDPs). In CFFA, the fruit fly algorithm (FFA), which is recognized for its durability and efficiency in addressing optimization problems, was paired with the chaotic local search (CLS) method, which allows for local exploitation. CFFA will be set up to work in two phases: in the first, FFA will be used to discover an approximate solution, and in the second, chaotic local search (CLS) will be used to locate the optimal solution. As a result, CFFA can address difficulties associated with the basic FFA such as falling into local optima, an imbalance between exploitation and exploration, and a lack of optimum solution acquisition (i.e., overcoming the drawback of premature convergence and increasing the local exploitation capability). The chaotic logistic map is employed in the CLS because it has been demonstrated to be effective in improving the quality of solutions and giving the best performance by many studies. The proposed algorithm is tested by the set of CEC’2005 special sessions on real parameter optimization and many EDPs from the most recent test suite CEC’2020. The results have demonstrated the superiority of the proposed approach to finding the global optimal solution. Finally, CFFA′s results were compared to those of earlier research, and statistical analysis using Friedman and Wilcoxon's tests revealed its superiority and capacity to tackle this type of problem.

Suggested Citation

  • M. A. El-Shorbagy & Akif Akgul, 2022. "Chaotic Fruit Fly Algorithm for Solving Engineering Design Problems," Complexity, Hindawi, vol. 2022, pages 1-19, April.
  • Handle: RePEc:hin:complx:6627409
    DOI: 10.1155/2022/6627409
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6627409.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6627409.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6627409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad H. Nadimi-Shahraki & Ali Fatahi & Hoda Zamani & Seyedali Mirjalili, 2022. "Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    2. Mohammed A. El-Shorbagy & Fatma M. Al-Drees, 2023. "Studying the Effect of Introducing Chaotic Search on Improving the Performance of the Sine Cosine Algorithm to Solve Optimization Problems and Nonlinear System of Equations," Mathematics, MDPI, vol. 11(5), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6627409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.