IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6627011.html
   My bibliography  Save this article

Assessment of Artificial Intelligence Models for Developing Single-Value and Loop Rating Curves

Author

Listed:
  • Majid Niazkar
  • Mohammad Zakwan
  • Zaher Mundher Yaseen

Abstract

Estimation of discharge flowing through rivers is an important aspect of water resource planning and management. The most common way to address this concern is to develop stage-discharge relationships at various river sections. Various computational techniques have been applied to develop discharge ratings and improve the accuracy of estimated discharges. In this regard, the present study explores the application of the novel hybrid multigene genetic programming-generalized reduced gradient (MGGP-GRG) technique for estimating river discharges for steady as well as unsteady flows. It also compares the MGGP-GRG performance with those of the commonly used optimization techniques. As a result, the rating curves of eight different rivers were developed using the conventional method, evolutionary algorithm (EA), the modified honey bee mating optimization (MHBMO) algorithm, artificial neural network (ANN), MGGP, and the hybrid MGGP-GRG technique. The comparison was conducted on the basis of several widely used performance evaluation criteria. It was observed that no model outperformed others for all datasets and metrics considered, which demonstrates that the best method may be different from one case to another one. Nevertheless, the ranking analysis indicates that the hybrid MGGP-GRG model overall performs the best in developing stage-discharge relationships for both single-value and loop rating curves. For instance, the hybrid MGGP-GRG technique improved sum of square of errors obtained by the conventional method between 4.5% and 99% for six out of eight datasets. Furthermore, EA, the MHBMO algorithm, and artificial intelligence (AI) models (ANN and MGGP) performed satisfactorily in some of the cases, while the idea of combining MGGP with GRG reveals that this hybrid method improved the performance of MGGP in this specific application. Unlike the black box nature of ANN, MGGP offers explicit equations for stream rating curves, which may be counted as one of the advantages of this AI model.

Suggested Citation

  • Majid Niazkar & Mohammad Zakwan & Zaher Mundher Yaseen, 2021. "Assessment of Artificial Intelligence Models for Developing Single-Value and Loop Rating Curves," Complexity, Hindawi, vol. 2021, pages 1-21, February.
  • Handle: RePEc:hin:complx:6627011
    DOI: 10.1155/2021/6627011
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6627011.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6627011.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6627011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6627011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.