IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6623485.html
   My bibliography  Save this article

Study on an Intelligent Prediction Method of Ticket Price in a Subway System with Public-Private Partnership

Author

Listed:
  • Shengmin Wang
  • Jun Fang
  • Lanjun Liu
  • Han Wu
  • Haitham Afan

Abstract

The accurate and rapid prediction of ticket prices for a public-private partnership (PPP) subway system, which is an important research topic in the field of civil engineering management, is of critical importance to ensure its smooth operation. To effectively cope with the effects of multiple influencing factors and strong nonlinearity among them, the mean impact value (MIV) method and the back-propagation (BP) feed-forward neural network improved by the sparrow search algorithm (SSA) are used in this study to develop an intelligent prediction model. First, we considered the relationship of the supply and the subway system service, which is a typical quasi-public product, and analyzed the relevant factors affecting its price adjustment. Then, we developed an intelligent method for the prediction of ticket prices based on the SSA-BP. This model not only makes full use of the powerful nonlinear modeling ability of the BP algorithm, but also takes advantage of the strong optimization ability and fast convergence speed of the SSA. Finally, this study screened out the key input factors by adopting the MIV method to simplify the structure of the BP algorithm and achieve a high prediction accuracy. In this study, Beijing Subway Line 4, Wuhan Metro Line 2, and Chengdu Metro Line 1 were selected as case study sites. The results showed that the linear correlations between influencing factors and ticket price for the PPP subway system service were weak, which indicated the need for using nonlinear analysis methods such as the BP algorithm. Compared with other prediction methods (the price adjustment method based on PPP contract, the traditional BP algorithm, the BP neural network improved by the genetic algorithm, the BP algorithm improved by the particle swarm optimization, and the support vector machine), the model proposed in this paper showed better prediction accuracy and calculation stability.

Suggested Citation

  • Shengmin Wang & Jun Fang & Lanjun Liu & Han Wu & Haitham Afan, 2021. "Study on an Intelligent Prediction Method of Ticket Price in a Subway System with Public-Private Partnership," Complexity, Hindawi, vol. 2021, pages 1-16, July.
  • Handle: RePEc:hin:complx:6623485
    DOI: 10.1155/2021/6623485
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6623485.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6623485.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6623485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6623485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.