Author
Abstract
This article focuses on the multidimensional construction of the multimedia network public opinion supervision mechanism, puts the research on the background of the era of big data, and based on the analysis and definition of the difference between network public opinion and network public opinion, deeply summarizes the network public opinion in the era of big data. New features analyze the opportunities and challenges faced by online public opinion in the era of big data. Based on the rational construction of the index system, this paper studies the multimedia network public opinion evaluation and prediction algorithm. Existing network public opinion assessment and prediction algorithms have shortcomings in capturing the characteristics of data sequences and the long-term dependence of data sequences, and the problems of overfitting and gradient disappearance may occur during training. Because of the above problems, based on the long-term and short-term memory network model, a regularized method is used to construct a multimedia network public opinion prediction model algorithm. This paper builds a multimedia network public opinion threat rating evaluation model based on the public opinion supervision prediction model and conducts analysis. The model constructed this time can not only improve the accuracy of public opinion assessment and prediction but also better avoid the problem of gradient disappearance and overfitting.
Suggested Citation
Yangfan Tong & Wei Sun, 2020.
"Multimedia Network Public Opinion Supervision Prediction Algorithm Based on Big Data,"
Complexity, Hindawi, vol. 2020, pages 1-11, December.
Handle:
RePEc:hin:complx:6623108
DOI: 10.1155/2020/6623108
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6623108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.