IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6622149.html
   My bibliography  Save this article

Model Predictive Control of Nonlinear System Based on GA-RBP Neural Network and Improved Gradient Descent Method

Author

Listed:
  • Youming Wang
  • Didi Qing
  • Thach Ngoc Dinh

Abstract

A model predictive control (MPC) method based on recursive backpropagation (RBP) neural network and genetic algorithm (GA) is proposed for a class of nonlinear systems with time delays and uncertainties. In the offline modeling stage, a multistep-ahead predictor with GA-RBP neural network is designed, where GA-BP neural network is used as a one-step prediction model and GA is employed to train the initial weights and bias of the BP neural network. The incorporation of GA into RBP can reduce the possibility of the BP neural network falling into a local optimum instead of reaching global optimization. In the online optimizing stage, a multistep-ahead GA-RBP neural network predictor and an improved gradient descent method (IGDM) are proposed to efficiently solve the online optimization problem of nonlinear MPC by minimizing a modified quadratic criterion. The designed MPC strategy can avoid information loss while linearizing the controlled system and computing the Hessian matrix and its inverse matrix. Experimental results show that the proposed approach can reduce the computational burden and improve the performance of MPC (i.e., the maximum overshoots, calculation time, rise time, and RMSE tracking error value) for the solution of nonlinear controlled systems.

Suggested Citation

  • Youming Wang & Didi Qing & Thach Ngoc Dinh, 2021. "Model Predictive Control of Nonlinear System Based on GA-RBP Neural Network and Improved Gradient Descent Method," Complexity, Hindawi, vol. 2021, pages 1-14, March.
  • Handle: RePEc:hin:complx:6622149
    DOI: 10.1155/2021/6622149
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6622149.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6622149.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6622149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6622149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.