Author
Abstract
This paper mainly analyzes the current situation of e-commerce in domestic SMEs and points out that there are limited initial investment and difficulty in financing in China’s SMEs; e-commerce control is not scientific; e-commerce personnel of SMEs are not of high quality, in the case of improper setting of the e-commerce sector and shortage of talents, rigid management model, and outdated management concepts. By using the loss function and the value chain management theory of the deep learning in the stationary wavelet domain residual learning model, the e-commerce model of SMEs is newly constructed, and the e-commerce department as the core department of the enterprise is proposed. By training the optimal parameters of the deep residual network and comparing the results with other models, the method of this paper has a good effect against the sample. The original loss function based on the residual learning model deep learning is modified to solve the original model fuzzy problem, which improves the effect and has good robustness. Finally, based on the wavelet residual depth residual evaluation method, this paper evaluates the application effect of this model and proposes relevant suggestions for improving this model, including rationalizing and perfecting the external value chain coordination mechanism, establishing the e-commerce value chain sharing center, and promoting integration of e-commerce business, strengthening measures and recommendations in various aspects of e-commerce information construction. At last, taking the business activities of a company as an example, applying the theory described in this paper to specific practice proves the feasibility and practical value of the theory.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6611325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.