Author
Abstract
Multiuser fair sharing of clusters is a classic problem in cluster construction. However, the cluster computing system for hybrid big data applications has the characteristics of heterogeneous requirements, which makes more and more cluster resource managers support fine-grained multidimensional learning resource management. In this context, it is oriented to multiusers of multidimensional learning resources. Shared clusters have become a new topic. A single consideration of a fair-shared cluster will result in a huge waste of resources in the context of discrete and dynamic resource allocation. Fairness and efficiency of cluster resource sharing for multidimensional learning resources are equally important. This paper studies big data processing technology and representative systems and analyzes multidimensional analysis and performance optimization technology. This article discusses the importance of discrete multidimensional learning resource allocation optimization in dynamic scenarios. At the same time, in view of the fact that most of the resources of the big data application cluster system are supplied to large jobs that account for a small proportion of job submissions, while the small jobs that account for a large proportion only use the characteristics of a small part of the system’s resources, the expected residual multidimensionality of large-scale work is proposed. The server with the least learning resources is allocated first, and only fair strategies are considered for small assignments. The topic index is distributed and stored on the system to realize the parallel processing of search to improve the efficiency of search processing. The effectiveness of RDIBT is verified through experimental simulation. The results show that RDIBT has higher performance than LSII index technology in index creation speed and search response speed. In addition, RDIBT can also ensure the scalability of the index system.
Suggested Citation
Weihua Huang & Zhihan Lv, 2021.
"Research on the Revolution of Multidimensional Learning Space in the Big Data Environment,"
Complexity, Hindawi, vol. 2021, pages 1-12, May.
Handle:
RePEc:hin:complx:6583491
DOI: 10.1155/2021/6583491
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6583491. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.