IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6573793.html
   My bibliography  Save this article

A Fully Operational Framework for Handling Cellular Automata Templates

Author

Listed:
  • Mauricio Verardo
  • Pedro P. B. de Oliveira

Abstract

Cellular automata are fully discrete, computational, or dynamical systems, characterised by a local, totally decentralised action. Although extremely simple in structure, they are able to represent arbitrarily complex phenomena. However, due to the very big number of rules in any nontrivial space, finding a local rule that globally unfolds as desired remains a challenging task. In order to help along this direction, here we present the current state of cellular automata templates , a data structure that allows for the representation of sets of cellular automata in a compact manner. The template data structure is defined, along with processes by which interesting templates can be built. In the end, we give an illustrative example showcasing how templates can be used to explore a very large cellular automaton space. Although the idea itself of template has been introduced before, only now its conceptual underpinnings and computational robustness rendered the notion effective for practical use.

Suggested Citation

  • Mauricio Verardo & Pedro P. B. de Oliveira, 2019. "A Fully Operational Framework for Handling Cellular Automata Templates," Complexity, Hindawi, vol. 2019, pages 1-11, April.
  • Handle: RePEc:hin:complx:6573793
    DOI: 10.1155/2019/6573793
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6573793.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6573793.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6573793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jorge L. Zapotecatl & David A. Rosenblueth & Carlos Gershenson, 2017. "Deliberative Self-Organizing Traffic Lights with Elementary Cellular Automata," Complexity, Hindawi, vol. 2017, pages 1-15, May.
    2. Irving Barragan-Vite & Juan C. Seck-Tuoh-Mora & Norberto Hernandez-Romero & Joselito Medina-Marin & Eva S. Hernandez-Gress, 2018. "Distributed Control of a Manufacturing System with One-Dimensional Cellular Automata," Complexity, Hindawi, vol. 2018, pages 1-15, October.
    3. Jun Yang & Weiling Liu & Yonghua Li & Xueming Li & Quansheng Ge, 2018. "Simulating Intraurban Land Use Dynamics under Multiple Scenarios Based on Fuzzy Cellular Automata: A Case Study of Jinzhou District, Dalian," Complexity, Hindawi, vol. 2018, pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianqi Rong & Pengyan Zhang & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Jiaxin Yang & Hao Chang & Linna Ge, 2020. "Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–20," Energies, MDPI, vol. 13(10), pages 1-18, May.
    2. Yi Lu & Shawn Laffan & Chris Pettit & Min Cao, 2020. "Land use change simulation and analysis using a vector cellular automata (CA) model: A case study of Ipswich City, Queensland, Australia," Environment and Planning B, , vol. 47(9), pages 1605-1621, November.
    3. Li, Zeyang & Luan, Weixin & Zhang, Zhenchao & Su, Min, 2020. "Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China," Land Use Policy, Elsevier, vol. 99(C).
    4. Chenxi Li & Jingyao Wu & Zenglei Xi & Weiqiang Zhang, 2021. "Farmers’ Satisfaction with Land Expropriation System Reform: A Case Study in China," Land, MDPI, vol. 10(12), pages 1-16, December.
    5. Xiuyan Zhao & Changhong Miao, 2022. "Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    6. Xuejiao Fan & Bin Quan & Zhiwei Deng & Jianxiong Liu, 2022. "Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    7. Evan B Brooks & John W Coulston & Kurt H Riitters & David N Wear, 2020. "Using a hybrid demand-allocation algorithm to enable distributional analysis of land use change patterns," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-21, October.
    8. Chenxi Li & Zenglei Xi, 2019. "Social Stability Risk Assessment of Land Expropriation: Lessons from the Chinese Case," IJERPH, MDPI, vol. 16(20), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6573793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.