Author
Listed:
- Mohammed Majeed Hameed
- Faidhalrahman Khaleel
- Mohamed Khalid AlOmar
- Siti Fatin Mohd Razali
- Mohammed Abdulhakim AlSaadi
- M. Z. Naser
Abstract
The deep beam in load transfer is very important as well as difficult to design due to its shear stress problems. Accurate estimation of shear stress would help engineers to get a safer design. One of the major obstacles in building an accurate prediction model is optimising the input variables. Therefore, developing an efficient algorithm to select the optimal input parameters that have the highest information content to represent the target and minimise redundant data is very important. The feature-section algorithm based on the combination of genetic algorithm and information theory (GAITH) was used to select the most important input combinations and introduce them into the prediction models. Four models were used in this study: locally weighted linear regression (LWLR) based on the radial basis kernel function, multiple linear regression (MLR), extreme learning machine (ELM), and random forest (RF). The study found that all applied models were significantly improved by the presence of the GAITH algorithm, except for the MLR model. The LWLR-GAITH model showed 29.15% to 47.88% higher performance accuracy in terms of root mean square error (RMSE) than the other hybrid models during the test phase. Moreover, the results of the standard models (without using the GAITH algorithm) proved the superiority of the LWLR model in reducing the RMSE by 34.51%, 55.17%, and 35.35% compared to RF, MLR, and ELM, respectively. Thus, the inclusion of the LWLR model with GAITH has demonstrated a reliable and applicable computer aid for modelling shear strength in deep beams.
Suggested Citation
Mohammed Majeed Hameed & Faidhalrahman Khaleel & Mohamed Khalid AlOmar & Siti Fatin Mohd Razali & Mohammed Abdulhakim AlSaadi & M. Z. Naser, 2022.
"Optimising the Selection of Input Variables to Increase the Predicting Accuracy of Shear Strength for Deep Beams,"
Complexity, Hindawi, vol. 2022, pages 1-23, July.
Handle:
RePEc:hin:complx:6532763
DOI: 10.1155/2022/6532763
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6532763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.