Author
Listed:
- Baolin Li
- Lihua Yang
- Harish Garg
Abstract
In multiple attribute decision-making (MADM), to better denote complicated preference information of decision-makers (DMs), picture fuzzy set (PFS) as an expansion of intuitionistic fuzzy set (IFS) has become a powerful tool in the recent years. Meanwhile, to remove the impact of abnormal data and capture the correlations among attributes in MADM issue, we propose the power improved generalized Heronian mean (PIGHM) operators in this paper, which have the merits of both power average (PA) operator and improved generalized Heronian mean (IGHM) operator. Additionally, Hamacher operations as a generalization of Algebraic operations and Einstein operations demonstrate good smooth approximate. Motivated by these, the main purpose is to explore PIGHM operators utilizing Hamacher operations to cope with MADM issue with picture fuzzy information. First, we introduce the Hamacher operations, the normalized hamming distance, and similarity measure of picture fuzzy numbers (PHNs). Second, based on these, two new picture fuzzy aggregating operators (AOs), the picture fuzzy Hamacher weighted power improved generalized Heronian mean (PFHWPIGHM) operator and the picture fuzzy Hamacher weighted geometric power improved generalized Heronian mean (PFHWGPIGHM) operator, are put forward, and some properties and special instances of proposed AOs are also investigated. Third, a new MADM model in terms of the PIGHM AOs is developed. Eventually, a practical MADM example, together with sensitivity analysis and comparative analysis, is conducted to verify the credibility and superiority of the new MADM model.
Suggested Citation
Baolin Li & Lihua Yang & Harish Garg, 2021.
"Power Improved Generalized Heronian Mean Operators Utilizing Hamacher Operations with Picture Fuzzy Information,"
Complexity, Hindawi, vol. 2021, pages 1-25, July.
Handle:
RePEc:hin:complx:6261229
DOI: 10.1155/2021/6261229
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6261229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.