Author
Listed:
- Yang Liu
- Bingrui Liu
- Yi Deng
- Jia Liu
- Chenquan Gan
Abstract
In late 2019, the COVID-19 pandemic began to spread over the world, causing millions of deaths. In the first few months of the pandemic, several countries (such as China) prevented the spread of the pandemic successfully. By contrast, the pandemic in many other countries was not controlled well. For example, India encountered a second serious outbreak of COVID-19 from April 2021 due to the poor resistance measures implemented by the government. To figure out the effective countermeasures to the pandemic, this research proposes a COVID-19 pandemic and its response system, which consists of the infection subsystem, the quarantine subsystem, and the medical subsystem. On this basis, an improved SEIR-SD model is established which is utilized to analyze the response measures to the pandemic quantitatively. This model successfully simulates the actual epidemic scenarios in Wuhan, which verifies its effectiveness. Afterward, the impact of hospital administration rate, quarantine rate, average contact number, and contact infection rate on the cumulative number of infections and deaths are analyzed by simulation. The results show that both the medical and administrative efforts, especially in the early stage of the epidemic, are significant in reducing the number of infections and shortening the epidemic period. In the medical aspect, the more stringent quarantine brings the earlier inflection point of the epidemic; more importantly, improving the treatment rate significantly reduces the scale of the epidemic. In the administrative aspect, enforcing individual protection and strict community closure can effectively cut off the transmission of the virus and curb the spread of the epidemic. Finally, this research proposes several practical suggestions in response to the COVID-19 pandemic. The main contribution of this research is that the effects of different response measures on the number of new infections daily and the cumulative number of deaths of a country or region in the COVID-19 pandemic are estimated quantitatively based on modeling and simulation.
Suggested Citation
Yang Liu & Bingrui Liu & Yi Deng & Jia Liu & Chenquan Gan, 2022.
"Quantitative Analysis of COVID-19 Pandemic Responses Based on an Improved SEIR-SD Model,"
Complexity, Hindawi, vol. 2022, pages 1-18, February.
Handle:
RePEc:hin:complx:6221181
DOI: 10.1155/2022/6221181
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6221181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.