IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6155300.html
   My bibliography  Save this article

Flood Detection Based on Unmanned Aerial Vehicle System and Deep Learning

Author

Listed:
  • Kaixin Yang
  • Sujie Zhang
  • Xinran Yang
  • Nan Wu
  • Chao Liu

Abstract

Floods are one of the main natural disasters, which cause huge damage to property, infrastructure, and economic losses every year. There is a need to develop an approach that could instantly detect flooded extent. Satellite remote sensing has been useful in emergency responses; however, with significant weakness due to long revisit period and unavailability during rainy/cloudy weather conditions. In recent years, unmanned aerial vehicle (UAV) systems have been widely used, especially in the fields of disaster monitoring and complex environments. This study employs deep learning models to develop an automated detection of flooded buildings with UAV aerial images. The method was explored in a case study for the Kangshan levee of Poyang Lake. Experimental results show that the inundation for the focal buildings and vegetation can be detected from the images with 88% and 85% accuracy, respectively. And further, we can estimate the buildings’ inundation area according to the UAV images and flight parameters. The result of this study shows promising value of the accuracy and timely visualization of the spatial distribution of inundation at the object level for the end users from flood emergency response sector.

Suggested Citation

  • Kaixin Yang & Sujie Zhang & Xinran Yang & Nan Wu & Chao Liu, 2022. "Flood Detection Based on Unmanned Aerial Vehicle System and Deep Learning," Complexity, Hindawi, vol. 2022, pages 1-9, May.
  • Handle: RePEc:hin:complx:6155300
    DOI: 10.1155/2022/6155300
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6155300.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/6155300.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6155300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Mazhar Khan & Imran Shafi & Wasi Haider Butt & Isabel de la Torre Diez & Miguel Angel López Flores & Juan Castanedo Galán & Imran Ashraf, 2023. "A Systematic Review of Disaster Management Systems: Approaches, Challenges, and Future Directions," Land, MDPI, vol. 12(8), pages 1-37, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6155300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.