Author
Listed:
- Tawfik Beghriche
- Mohamed Djerioui
- Youcef Brik
- Bilal Attallah
- Samir Brahim Belhaouari
- Hocine Cherifi
Abstract
One of the main reasons for disability and premature mortality in the world is diabetes disease, which can cause different sorts of damage to organs such as kidneys, eyes, and heart arteries. The deaths by diabetes are increasing each year, so the need to develop a system that can effectively diagnose diabetes patients becomes inevitable. In this work, an efficient medical decision system for diabetes prediction based on Deep Neural Network (DNN) is presented. Such algorithms are state-of-the-art in computer vision, language processing, and image analysis, and when applied in healthcare for prediction and diagnosis purposes, these algorithms can produce highly accurate results. Moreover, they can be combined with medical knowledge to improve decision-making effectiveness, adaptability, and transparency. A performance comparison between the DNN algorithm and some well-known machine learning techniques as well as the state-of-the-art methods is presented. The obtained results showed that our proposed method based on the DNN technique provides promising performances with an accuracy of 99.75% and an F1-score of 99.66%. This improvement can reduce time, efforts, and labor in healthcare services as well as increasing the final decision accuracy.
Suggested Citation
Tawfik Beghriche & Mohamed Djerioui & Youcef Brik & Bilal Attallah & Samir Brahim Belhaouari & Hocine Cherifi, 2021.
"An Efficient Prediction System for Diabetes Disease Based on Deep Neural Network,"
Complexity, Hindawi, vol. 2021, pages 1-14, December.
Handle:
RePEc:hin:complx:6053824
DOI: 10.1155/2021/6053824
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6053824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.