IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6010634.html
   My bibliography  Save this article

Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems

Author

Listed:
  • J. Nathan Kutz
  • J. L. Proctor
  • S. L. Brunton

Abstract

We consider the application of Koopman theory to nonlinear partial differential equations and data-driven spatio-temporal systems. We demonstrate that the observables chosen for constructing the Koopman operator are critical for enabling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition (DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues, and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet interpretable, approximation to the Koopman operator that lies between the DMD method and the computationally intensive extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on several canonical nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-quintic Ginzburg-Landau equation, and a reaction-diffusion system. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables.

Suggested Citation

  • J. Nathan Kutz & J. L. Proctor & S. L. Brunton, 2018. "Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems," Complexity, Hindawi, vol. 2018, pages 1-16, December.
  • Handle: RePEc:hin:complx:6010634
    DOI: 10.1155/2018/6010634
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/6010634.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/6010634.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6010634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mallen, Alex T. & Lange, Henning & Kutz, J. Nathan, 2024. "Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties," International Journal of Forecasting, Elsevier, vol. 40(3), pages 859-868.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6010634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.