Author
Abstract
The effect is tested in various specific scenes of sports videos to complete the multitarget motion multitarget tracking detection application applicable to various specific scenes within sports videos. In this paper, deep neural networks are applied to sports video multitarget motion shadow suppression and accurate tracking to improve tracking performance. After the target frame selection is determined, the tracker uses an optical flow method to estimate the limits of the target sports video multitarget motion based on the sports video multitarget motion of the target object between frames. The detector first scans each sports video image frame one by one, observing the previously discovered and learned image frame subregions one by one until the current moment that is highly like the target to be tracked. The preprocessed remote sensing images are converted into grayscale images, the histogram is normalized, and the appropriate height threshold is selected in combination with the regional growth function to realize the rejection of sports video multitarget motion shadow and establish the sports video multitarget network model. The distance and direction of the precise target displacement are determined by frequency-domain vectors and null domain vectors, and the target action judgment mechanism is formed by decision learning. Finally, comparing with other shadow rejection and precision tracking algorithms, the proposed algorithm achieves greater advantages in terms of accuracy and time consumption.
Suggested Citation
Chunxia Duan & Zhihan Lv, 2021.
"Deep Learning-Based Multitarget Motion Shadow Rejection and Accurate Tracking for Sports Video,"
Complexity, Hindawi, vol. 2021, pages 1-11, June.
Handle:
RePEc:hin:complx:5973531
DOI: 10.1155/2021/5973531
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5973531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.