IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5904607.html
   My bibliography  Save this article

Dynamic Analysis, Circuit Design, and Synchronization of a Novel 6D Memristive Four-Wing Hyperchaotic System with Multiple Coexisting Attractors

Author

Listed:
  • Fei Yu
  • Li Liu
  • Hui Shen
  • Zinan Zhang
  • Yuanyuan Huang
  • Changqiong Shi
  • Shuo Cai
  • Xianming Wu
  • Sichun Du
  • Qiuzhen Wan

Abstract

In this work, a novel 6D four-wing hyperchaotic system with a line equilibrium based on a flux-controlled memristor model is proposed. The novel system is inspired from an existing 5D four-wing hyperchaotic system introduced by Zarei (2015). Fundamental properties of the novel system are discussed, and its complex behaviors are characterized using phase portraits, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. When a suitable set of parameters are chosen, the system exhibits a rich repertoire of dynamic behaviors including double-period bifurcation of the quasiperiod, a single two-wing, and four-wing chaotic attractors. Further analysis of the novel system shows that the multiple coexisting attractors can be observed with different system parameter values and initial values. Moreover, the feasibility of the proposed mathematical model is also presented by using Multisim simulations based on an electronic analog of the model. Finally, the active control method is used to design the appropriate controller to realize the synchronization between the proposed 6D memristive hyperchaotic system and the 6D hyperchaotic Yang system with different structures. The Routh–Hurwitz criterion is used to prove the rationality of the controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations.

Suggested Citation

  • Fei Yu & Li Liu & Hui Shen & Zinan Zhang & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Xianming Wu & Sichun Du & Qiuzhen Wan, 2020. "Dynamic Analysis, Circuit Design, and Synchronization of a Novel 6D Memristive Four-Wing Hyperchaotic System with Multiple Coexisting Attractors," Complexity, Hindawi, vol. 2020, pages 1-17, May.
  • Handle: RePEc:hin:complx:5904607
    DOI: 10.1155/2020/5904607
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/5904607.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/5904607.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5904607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Zhao, Rui & Wang, Baoxian & Jian, Jigui, 2022. "Global μ-stabilization of quaternion-valued inertial BAM neural networks with time-varying delays via time-delayed impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 223-245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5904607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.