IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5605499.html
   My bibliography  Save this article

Credit Rating Model of Small Enterprises Based on Optimal Discriminant Ability and Its Empirical Study

Author

Listed:
  • Zhanjiang Li
  • Lin Guo
  • Sameh S. Askar

Abstract

As an important part of the national economy, small enterprises are now facing the problem of financing difficulties, so a scientific and reasonable credit rating method for small enterprises is very important. This paper proposes a credit rating model of small enterprises based on optimal discriminant ability; the credit score gap of small enterprises within the same credit rating is the smallest, and the credit score gap of small enterprises between different credit ratings is the largest, which is the dividing principle of credit rating of small enterprises based on the optimal discriminant ability. Based on this principle, a nonlinear optimization model for credit rating division of small enterprises is built, and the approximate solution of the model is solved by a recursive algorithm with strong reproducibility and clear structure. The small enterprise credit rating division not only satisfies the principle that the higher the credit grade, the lower the default loss rate, but also satisfies the principle that the credit group of small enterprises matches the credit grade, with credit data of 3111 small enterprises from a commercial bank for empirical analysis. The innovation of this study is the maximum ratio of the sum of the dispersions of credit scores between different credit ratings and the sum of the dispersions of credit scores within the same credit rating as the objective function, as well as the default loss rate of the next credit grade strictly larger than the default loss rate of the previous credit grade as the inequality constraint; a nonlinear credit rating optimal partition model is constructed. It ensures that the small enterprises with small credit score gap are of the same credit grade, while the small enterprises with large credit score gap are of different credit grades, overcoming the disadvantages of the existing research that only considers the small enterprises with large credit score gap and ignores the small enterprises with small credit score gap. The empirical results show that the credit rating of small enterprises in this study not only matches the reasonable default loss rate but also matches the credit status of small enterprises. The test and comparative analysis with the existing research based on customer number distribution, K-means clustering, and default pyramid division show that the credit rating model in this study is reasonable and the distribution of credit score interval is more stable.

Suggested Citation

  • Zhanjiang Li & Lin Guo & Sameh S. Askar, 2021. "Credit Rating Model of Small Enterprises Based on Optimal Discriminant Ability and Its Empirical Study," Complexity, Hindawi, vol. 2021, pages 1-12, November.
  • Handle: RePEc:hin:complx:5605499
    DOI: 10.1155/2021/5605499
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5605499.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5605499.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5605499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5605499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.