IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5597060.html
   My bibliography  Save this article

Identification of Accounting Fraud Based on Support Vector Machine and Logistic Regression Model

Author

Listed:
  • Rongyuan Qin
  • Wei Wang

Abstract

The authenticity of the company’s accounting information is an important guarantee for the effective operation of the capital market. Accounting fraud is the tampering and distortion of the company’s public disclosure information. The continuous outbreak of fraud cases has dealt a heavy blow to the confidence of investors, shaken the credit foundation of the capital market, and hindered the healthy and stable development of the capital market. Therefore, it is of great theoretical and practical significance to carry out the research on the identification and governance of accounting fraud. Traditionally, accounting fraud identification is mostly based on linear thinking to build the fraud identification model. However, more and more studies show that fraud has typical nonlinear characteristics, and the multiobjective of fraud means also determines the limitations of using the linear model for identification. Considering that the traditional identification methods may have the defects of model setting error and insufficient information extraction, this paper constructs the support vector machine and logistic regression model to identify accounting fraud. The support vector machine is used to improve the learning ability and generalization ability of unknown phenomena, and the explanatory power of each variable to the whole model is identified by the logistic regression model. This paper breaks through the linear constraint hypothesis and explores the model setting form which is more suitable for the law of corporate fraud behaviour to extract the fraud identification information more fully and provide more powerful support for investors to effectively identify fraud.

Suggested Citation

  • Rongyuan Qin & Wei Wang, 2021. "Identification of Accounting Fraud Based on Support Vector Machine and Logistic Regression Model," Complexity, Hindawi, vol. 2021, pages 1-11, April.
  • Handle: RePEc:hin:complx:5597060
    DOI: 10.1155/2021/5597060
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5597060.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5597060.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5597060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5597060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.