Author
Listed:
- Junhyuk Woo
- Hyeongmo Kim
- Soon Ho Kim
- Kyungreem Han
- Chittaranjan Hens
Abstract
The echo state property (ESP) is a key concept for understanding the working principle of the most widely used reservoir computing model, the echo state network (ESN). The ESP is achieved most of the operation time under general conditions, yet the property is lost when a combination of driving input signals and intrinsic reservoir dynamics causes unfavorable conditions for forgetting the initial transient state. A widely used treatment, setting the spectral radius of the weight matrix below the unity, is not sufficient as it may not properly account for the nature of driving inputs. Here, we characterize how noisy driving inputs affect the dynamical properties of an ESN and the empirical evaluation of the ESP. The standard ESN with a hyperbolic tangent activation function is tested using the MNIST handwritten digit datasets at different additive white Gaussian noise levels. The correlations among the neurons, input mapping, and memory capacity of the reservoir nonlinearly decrease with the noise level. These trends agree with the deterioration of the MNIST classification accuracy against noise. In addition, the ESP index for noisy driving input is developed as a tool to help easily assess ESPs in practical applications. Bifurcation analysis explicates how the noise destroys an asymptotical convergence in an ESN and confirms that the proposed index successfully captures the ESP against noise. These results pave the way for developing noise-robust reservoir computing systems, which may promote the validity and utility of reservoir computing for real-world machine learning applications.
Suggested Citation
Junhyuk Woo & Hyeongmo Kim & Soon Ho Kim & Kyungreem Han & Chittaranjan Hens, 2024.
"Echo State Property upon Noisy Driving Input,"
Complexity, Hindawi, vol. 2024, pages 1-15, February.
Handle:
RePEc:hin:complx:5593925
DOI: 10.1155/2024/5593925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5593925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.