Author
Listed:
- Jinyu Cheng
- Hong Wang
- Wei Wang
Abstract
This paper firstly designs a five-dimensional model of learners’ characteristics (learners’ English reading ability, cognitive style, learning goal, learning situation, and learning effect) and a three-dimensional model of English reading resources’ characteristics (question types, topics, and difficulty of resources) in a fragmented learning environment through literature research. At the same time, to make the learning resources meet the characteristics of fragmented learning time and space, the English Level 4 reading resources are reasonably designed and segmented to adapt to the needs of learners’ mobile fragmented learning. Then, combined with machine learning algorithms, an adaptive recommendation model of learning resources in English fragmented reading is constructed. The algorithm-based adaptive recommendation algorithm for English fragmented reading resources is designed. Based on the generated decision trees, the expression rules are parsed to achieve adaptive pushing of resources. The results of this study show that adaptive recommendation of learning resources in English fragmented reading can help teachers to develop future resource recommendation strategies through effective data collection to adaptively push resources that are close to learners’ individual needs. The use of mobile by English learners to learn to read in a fragmented learning context enables targeted training in weak areas of English reading, thus enhancing different aspects of learners’ reading skills.
Suggested Citation
Jinyu Cheng & Hong Wang & Wei Wang, 2021.
"Adaptive Algorithm Recommendation and Application of Learning Resources in English Fragmented Reading,"
Complexity, Hindawi, vol. 2021, pages 1-11, March.
Handle:
RePEc:hin:complx:5592534
DOI: 10.1155/2021/5592534
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5592534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.