IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5590631.html
   My bibliography  Save this article

Clustering and Prediction Analysis of the Coordinated Development of China’s Regional Economy Based on Immune Genetic Algorithm

Author

Listed:
  • Yang Yang
  • Wei Wang

Abstract

Since the opening of the economy, China’s regional economy has developed rapidly, the overall national strength has been increasing, and the people’s living standards have been continuously improved. The issue of coordinated regional development has become an important issue in today’s society. Genetic algorithm is a kind of prediction algorithm that has developed rapidly in recent years and is widely used. However, when solving engineering prediction problems, there are often problems such as premature convergence and easiness to fall into local optimal solutions. Therefore, on the basis of studying the related theories of genetic algorithm and artificial immune algorithm, this paper uses the advantages of the two algorithms, combines the two algorithms, and proposes an improved algorithm for genetic algorithm-adaptive immune genetic algorithm. Taking genetic algorithm as the basic framework, the operators and selection methods of artificial immune algorithm are integrated. Using the adaptive concept, the formulas of adaptive crossover probability and mutation probability are innovatively designed. Compared with the fixed value of the immune genetic algorithm, the introduction of the adaptive concept can intelligently adjust the optimization process and increase the optimization speed. Considering the double uncertain factors of product market demand and waste product recycling in the remanufacturing supply chain system, the maximization of logistics network operating profit, the minimization of environmental impact, and the maximization of customer satisfaction are the forecast goals. The market demand of uncertain products is effectively controlled through the option contract mechanism, and a multiobjective forecasting model based on the option contract mechanism is established. According to the characteristics of the model, an improved immune genetic algorithm is designed to solve the problem, and the effectiveness of the immune genetic algorithm is verified through an example.

Suggested Citation

  • Yang Yang & Wei Wang, 2021. "Clustering and Prediction Analysis of the Coordinated Development of China’s Regional Economy Based on Immune Genetic Algorithm," Complexity, Hindawi, vol. 2021, pages 1-12, March.
  • Handle: RePEc:hin:complx:5590631
    DOI: 10.1155/2021/5590631
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5590631.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5590631.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5590631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5590631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.