IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5588650.html
   My bibliography  Save this article

Educational Information System Optimization for Artificial Intelligence Teaching Strategies

Author

Listed:
  • Taotang Liu
  • Zhongxin Gao
  • Honghai Guan
  • Wei Wang

Abstract

Under the background of the information age, scientific research and engineering practice have developed vigorously, resulting in many complex optimization problems that are difficult to solve. How to design more effective optimization methods has become the focus of urgent solutions in many academic fields. Under the guidance of such demand, intelligent optimization algorithms have emerged. This article analyzes and optimizes the modern artificial intelligence teaching information system in detail. On the basis of determining the network architecture, a detailed demand analysis was carried out, and the overall structure optimization of the network was given; the business process and data flow of the main modules of the website (resource center module and collaborative learning module) were optimized. In order to further enhance the local search ability of the algorithm, a multiclass interactive optimization algorithm is proposed in combination with the Euclidean distance-based clustering method, which changes the teaching mode from “one-person teaching†to “multiperson teaching.†This clustering method has lower complexity and is beneficial to enhance the utilization of neighborhood information. At the same time, in order to enhance the diversity of the population and strengthen the connection between the subgroups, after the teaching phase, the worst students in each subgroup are allowed to learn from the best teachers of the population, and after the learning phase, individuals in a random subgroup are allowed to learn from other subgroups. The algorithm was tested in the experimental environment of unconstrained, constrained, and an engineering problem. From the test results, it can be seen that the algorithm is not easy to fall into the local optimum. Compared with other algorithms, the solution accuracy is higher and the stability is better. And it performed well in engineering optimization problems, thus verifying the effectiveness of the strategy.

Suggested Citation

  • Taotang Liu & Zhongxin Gao & Honghai Guan & Wei Wang, 2021. "Educational Information System Optimization for Artificial Intelligence Teaching Strategies," Complexity, Hindawi, vol. 2021, pages 1-13, May.
  • Handle: RePEc:hin:complx:5588650
    DOI: 10.1155/2021/5588650
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5588650.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5588650.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5588650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zeyu & Deng, Yue & Zhou, Shouan & Wu, Zhongbang, 2023. "Achieving sustainable development goal 9: A study of enterprise resource optimization based on artificial intelligence algorithms," Resources Policy, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5588650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.